- 1. (a) Given handlebody decompositions of surfaces S and S', each admitting a single 0- and 2-handle, determine a handlebody decomposition of the connect sum $S \sharp S'$, again admitting a single 0- and 2-handle.
 - (b) Show that every closed, orientable surface is diffeomorphic to S^2 or $\sharp_k T^2$, where T^2 is the torus.
 - (c) Show that every closed, unorientable surface can be decomposed as $\mathbb{RP}^2 \sharp S'$.
 - (d) Prove that $T^2 \sharp \mathbb{RP}^2$ is diffeomorphic to $\mathbb{RP}^2 \sharp \mathbb{RP}^2 \sharp \mathbb{RP}^2$.
 - (e) List all closed surfaces.
- 2. Prove that every finitely presented group is the fundamental group of some closed, orientable smooth 4-manifold (fun fact: $\mathbb{Z} \rtimes Z$ does not arise as the fundamental group of any 3-manifold).
- 3. Let Y_g be the double of the genus g handlebody. Determine $\pi_1(Y_g)$ and $H_k(Y_g)$. What is the manifold Y_q ?
- 4. Prove that Hom(-,G) is left-exact. Conclude that $Ext^0(H,G) \cong Hom(H,G)$.
- 5. (Hatcher, number 2.2.21) If a finite CW complex X is the union of subcomplexes A and B, show that $\chi(X) = \chi(A) + \chi(B) \chi(A \cap B)$.
- 6. (Hatcher, number 2.2.22) For X a finite CW complex and $p: \tilde{X} \to X$ an *n*-sheeted covering space, show that $\chi(\tilde{X}) = n\chi(X)$.
- 7. (Hatcher, number 3.1.3) Regarding \mathbb{Z}_2 as a module over the ring \mathbb{Z}_4 , construct a resolution of \mathbb{Z}_2 by free \mathbb{Z}_4 -modules. Use this to show that $Ext^n_{\mathbb{Z}_4}(\mathbb{Z}_2,\mathbb{Z}_2)$ is nonzero for all n.
- 8. (Hatcher, number 3.1.10) For the Lens space $L_m(l_1, \dots, l_n)$ defined in Example 2.43, compute the cohomology groups using the cellular cochain complex and taking coefficients in \mathbb{Z} , \mathbb{Q} , \mathbb{Z}_m , and \mathbb{Z}_p for p prime. Verify that the answers agree with those given by the universal coefficient theorem.